
1

CItris - Console tetris in C#
Peter Wilkinson <Peter@quanglewangle.com>

Revision History
Revision 1.0 20 July 2011

Draft

Abstract

A simple console implementation of the game tetis in C# using no object oriented features

History, acknowledgements and licence
The source code is derived from consoletetris, a C++ program written by bidepan2 and obtained from
https://code.google.com/p/consoletetris/ under an MIT licence

The code here has been simplified; had most of the OO aspects removed; translated into C#; and
had a number of bugs fixed. I nonetheless owe a debt to bidepan2, which I freely acknowledge. One
particular aspect of bidepan2's code I admire is the transform() function which rotates a block
simply by changing it into another of the same shape but oriented 90° around

This code is released an MIT licence. http://www.opensource.org/licenses/mit-license.php

Purpose
There were three purposes to writing the software:

1. To remind myself how to program, since I was about to teach a programing course

2. To establish that it was possible to write a reasonably substantial program in C# without using
object oriented features. This was because the syllabus I was about to teach excluded OO, more
or less explicitly. This is not the place to argue the merits of excluding OO from an programming
course: trust me that the syllabus did so exclude.

3. To provide an exemplar program around which to base the course

While the first two points were successful, the last failed: the program was too complex and too long
to use to base the course around. I recovered some of the effort by saying that I would make the source
code available at the end of the course, for students to do with whatever they liked.

The code

Playing surface
The game takes place on the surface two dimensional array

static int[,] surface = new int[COL, ROW];

Blocks
The blocks themselves are drawn inside a four by four cell bounding box. The painted cells are kept as
far up and left in the bounding box as possible. There is only one active block at any one time. Three
global variables are important for the active block.

CItris - Console tetris in C#

2

Figure 1. Sideways T in four by four bounding box

static int x;
static int y;
static blocktype type;

Block position is set by x and y and its type (see below) is kept in blocktype.

The sort of tile (Z, T, L, square, I) is held in blocktype. This is used as a reference into the array
blocklayouts, which is an array of four by four bitmaps.

Here is a section showing the first two four by four tiles, for a vertical I and a horizontal I

 static int[,,] blocklayouts = {
{ { 1, 0, 0, 0 }, /* IV */
 { 1, 0, 0, 0 },
 { 1, 0, 0, 0 },
 { 1, 0, 0, 0 } },
{ { 1, 1, 1, 1 }, /* IH */
 { 0, 0, 0, 0 },
 { 0, 0, 0, 0 },
 { 0, 0, 0, 0 } },
...initializaion of other blocks ommitted for clarity

The hardest thing here is figuring out the syntax for initializing a three dimensional array.

Collisions and landing

The boolean function collision() checks (only) coloured cells in the currently active block to
determine if

• the coloured cell would (if rendered) be off the edge of the playing surface or

• the coloured cell would (if rendered) overlay a coloured cell of a "landed" blocks

When a block lands it becomes part of the background.

CItris - Console tetris in C#

3

Non-blocking input and "Busy waiting"
This program uses non-blocking input. Console.KeyAvailable is tested to see if a key is
pressed, then if it is Console.ReadKey(true) is called to fetch the key. Performed in a loop this
technique is known as busy waiting.

Busy waiting can soak up CPU cycles and profoundly effect performance and in the worst case can
so starve the operating system of time that the display thread stalls and programs can even get into a
state where they can not be stopped. The call to Sleep() passes control back to the operating system
briefly to allow it to schedule other tasks. Sleep() takes as a parameter the number of milliseconds
before returning. Sleep() sleeps for at least this number of milliseconds and may sleep longer so
don't use it for timing.

Even if you want program to run stupidly fast don't be tempted to remove the call Sleep(). A
parameter of zero will make it sleep momentarily, but still allow the operating system a look-in and
the game will be so fast as to be unplayable.

while (Console.KeyAvailable) { Find out if a key is pressed

 If we get here there is a key pressed, so read it

 ConsoleKeyInfo key = Console.ReadKey(true);

 switch (key.Key){

 Switch cases omitted for clarity

 }
 The call to Sleep is essential.
 See text

 System.Threading.Thread.Sleep(30);

}

Compiling the code
The code was developed in Sharp Develop V3.2 but there is nothing about the code that makes it
dependent on Sharp Develop. If you are using Sharp Develop the easiest way to complie the code is
to start a new Console Mode project and copy and paste all of the source code over all of the initial
default "Hello World" code. Then compile and run.

	CItris - Console tetris in C#
	History, acknowledgements and licence
	Purpose
	The code
	Playing surface
	Blocks
	Collisions and landing
	Non-blocking input and "Busy waiting"

	Compiling the code

