ATP

This document is a reference to ATP and not a general tutorial. It describes the system that ATP is
simulating, and is areference to the op codes. It refersto version 3.3 build 147

History of ATP

Assembler Training Program (ATP) was originated to support the hypothetical processor described in
(Knott & Waites 2000). The original ATP was written in Visual Basic and was difficult to distribute
and maintain. ATP V3 isaJavaapplet. Assuch it is straightforward to distribute: users simply open
the web page; and easy to maintain: only the web page source needs to be changed for all users to
have a new version.

The Simulated System

ATPisasimulation of amicroprocessor and associated memory, and simple BIOS. It also incorporates
an assembl er program with abuilt in editor. The BIOS supportsinteger and character input and output;
and string input. The processor can do arange of simple operationsincluding basic integer arithmetic.

For experiments on interrupt driven i/o asingle interrupt line and associated vector is provided.

Memory

The simulated processor is word addressed. This means that is the smallest element of memory that
can be addressed is a 16,9 bit word. The system has just over 1 k words of RAM, visible from the
grid at bottom right of the ATP screen. Notice that the memory display column headers, row headers
and cell contents are all in hex.

Interrupt vector

For most simpl e applicationstheinterrupt vector can beignored, and should not be changed unlessyou
know what you are doing. This section can be skipped unless you plan to change the interrupt vectors

Registers
There are 14 registers.

Ten genera purpose registers: RO to R9. RO, athough a general register, is used by the software
interrupts SW PUTCHAR, SW PUTI NT and SW GETCHAR

PC isthe program counter. Thisis increased by one for one-word instructions and two for two word
instructions so that after execution of an instruction it points to the next instruction to be executed.

VRishe oVeRflow register. Thisholds the remainder after DIV (divide) and (possibly) the high order
word on MUL (multiply) if the result does not fit into one word. If there is no remainder, or the result
of amultiply does not need a high order word, then VR will contain zero after the operation.

SP is the stack pointer. If hardware interrupts are to be used this should be set to the top of stack.
Conventionally 04FF¢ is the top of stack but knowledgeable users may use other values (but take
care!)

Flags

C Carry. Set if and only if previous operation sets the 17th bit.

V Overflow. Set if previous operation would have set any bit in notional high order word and clear
otherwise. Theregister VR will hold the actual high order word result.




ATP

Z Zero. Set if previous operation would have resulted in all bitsin 16 bit register being zero, otherwise
unset

S Sign. Set if high order bit is set, i.e. if result of previous operation could be regarded as negative
16 bit signed number, otherwise unset

| Interrupt. If set then hardware interrupts can occur. If unset they cannot.

Memory map

Description Syntax

0- 04FF¢ Availablefor user code and data. When processor
starts PC is set to O so location O should
contain an executable instruction (if only ajmpto
somewhere else.

If interrupts are used the top of this portion of
memory isused as astack, starting from 04FF and
growing downwards.

XXX - 04FF1g Top of stack This is the recommend location for
thetop of the stack sinceit givesthe most room to
grow, however it can be located anywhere in user
memory.. Stack grows downwards towards user
memory. The register SP isthe stack pointer.

050016 Keyboard interrupt vector. When a key is struck
and if the contents of this location is not O the
current value of PC is saved and the valuein this
location is loaded into PC. Hence there should
be code to handle the keystroke at the location
pointed to by the contents of 05004¢ This handler
code should be terminated by an iret instruction.
If 050046 contains O (the usual situation) then the
built-in keyboard handler is used.

051046 The keyboard is mapped here. If this location is
read the ASCI| value of the most recently pressed
key will be found. Reading this location sets
location 0511;5t0 0

051136 Key ready. Contains 0 if no key has been pressed
sincethelocation 051046 waslast read otherwise 1

Table 1. memory map

Syntax

Inthe following examples of syntax value standsfor anumber, regD for adestination register, regSfor
asource register, and reg for a register which can be source or destination or source and destination.
Items in square brackets are optional .

Description Syntax

Set contents of unnamed memory cell(s) DATA val ue[, val ue[, val ue] . ..]

Set contents of named memory cell(s) someNane DATA val ue[, val ue[, val ue]. ..
Set instruction counter ORG 27

Label nyLabel :

Table 2. Directives - Executed at assemble-time and generate no code




ATP

DATA

ORG

Mode Description Syntax
Direct mode Register to register operation |OP regD, regS
Immediate Mode Register and litera number|OP reg, @3
operation
Indexed mode Load or store from/to an address|OP r egD, 33+regS
determined from adding the
number (33 in this example) to
the content of the register

Table 3. Addressing M odes

Entry Syntax

Operating system call SW NAME OF OF CALL

Table 4. Others

Can have just one value or commadelimited list. The DATA directive assembles values into memory
at current assemble-time counter (see ORG). If optional label is used (to left of DATA) thisis given
the value of the location in memory used

Single charactersin single quotes are converted to ASCII before assembly. Example:

nyl abel DATA 65, 'B', 66

As the assembler assembles the program in to memory it uses an internal counter to keep track of
where the code for the next statement should be assembled. This starts from 0 by default. Users can
control the value in the counter with the ORG directive. Example:

ORG 120

Sets the instruction counter to 12049

Direct mode operations

Direct mode operations involve two registers. Example:
MOV R1l, R2

Moves whatever isin R2 into R1

Immediate mode operations

Immediate mode opcodes involve one register and one literal number Example
MOV R1, @3

Moves 33 into register 1

Index mode operations

Immediate mode opcodes involve one register and a memory cell whose address is calculated by
adding a literal number to the value currently stored in a register. Only LDR (load register from
memory) and STR (store register to memory) work with indexed mode.




ATP

LDR R4, 34+Rl ; load contents of nenory | ocation
; fornmed by adding R1 to 34
; into register R4

L oads whatever isin the memory address R1+34, into register R4
Labels
A labd is assigned the current value of the instruction counter at the point where the label is

encountered. labels are used as the target of jumps. Example Inserts alabel mylabel between the two
mov statements. The values assigned to labels can be seen in the symbol table.

MOV R1, R2
nyl abel :
MOV R3, R4

Inserts a label mylabel between the two mov statements. The values assigned to labels can be seen
in the symbol table.

OP Codes

MOV Move contents of second operand into first. Direct and immediate mode.

CMVP Compares second operand with first. Actually, it subtracts second from first and sets the flags
but does not change either operand. Direct and immediate mode.

MUL Multipliesfirst operand by second and leaves result in first. If result istoo big to fit in first then
overflow flag is set and overflow is stored in VR. Direct and immediate mode.

XOR Xorsfirst operand with second and leaves result in first. Direct and immediate mode.
SUB Subtract second operand from first and leaves result in first. Direct and immediate mode.
LDR Loads contents of effective address into first operand register.

STR Stores contents of first operand register into an effective address . Effective address can be a
number or a number+aregister. (Indexed mode)

| NC Adds one to register.

DEC Subtracts one from register.

JEQJump if EQual (i.e. if Zero flag set)

JNE Jump if Not Equal (i.e. if Zero flagisclear)
JGT Jump if Greater Than

JLE Jump if Less than or Equal

JLT Jumpif Less Than

JVC Jump if oVerflow Clear

JVSJump if oVerflow Set

| RET Return from interrupt. Atomically (resets the interrupt flag, jumps to the address found at the
top of the stack, and pops the stack)

STl Setstheinterrupt flag, thus permitting interrupts to occur




ATP

CLI Clears (resets) the interrupt flag, thus preventing interrupts from occurring

PUSH Pushes contents of register onto the stack and decreses SP by one. (copies the contents of
register into memory address pointed to by SP). The stack should be set up before executing PUSH
or unexpected things will happen

POP Popsthe stack into register and increases SP by one. (copiesthe contents memory address pointed
to by SP into register). The stack should be set up before executing POP or unexpected things will
happen

Operating system calls

There is assumed to be a very simple operating system to perform keyboard input and screen output.
Programs need to be able to call into the operating system to do input and output. The opcode SWI
<somefunction> callsinto the operating system. In this processor all callsto the operating system pass
in and get out data through RO. Thus, although RO is a general register it is best to avoid using it so
it isvacant for any operating system calls that need to be made.

nov r0, @
swi putint ; put 5 out on screen (put unsigned int)

Outputs the value in RO as an unsigned base 10 integer.

mov r0, @5
swi putsint ; put -5 out on screen (put signed int)

Outputs the value in RO as an signed base 10 integer.

nov r0, @5
Swi putchar ; put A out on screen

Outputs the value in RO as an ASCII character

swi getint
: RO now contains the nunber the user entered

Gets an integer from the input window as a base 10 integer. The thread of execution stops and waits
until the user pressesthe[input] button. If the number is preceeded by aminussignit will beinterpreted
as a signed negative number. It the string can not be interpreted as a base 10 integer the message
"PANIC: not anumber" will be written in the status window and zero will be stored in RO. Execution
will continue.

jmp start ; junmp over buffer to next executable line
BUFFER data 5
data " "

start:
mov r0, @UFFER ; nove *address* of buffer into RO
swi getstr

Gets a string from the user. Before the call RO should be set to contain the address of a buffer, that
isaseries of addresses, large enough to contain the anticipated string. When the user types the string
and hits return the buffer will be filled with the string formated as follows. The string format has the
first (lowest) word as a number representing the string length (not including the first word), thus the
string “ABC” would be represented in memory as

Address Value Description
55 3 Length word
56 65 ASCII "A"
57 66 ASCII "B"




ATP

Address Value Description
58 67 ASCII "C"

Table5. String " ABC" in memory starting at 55

Numbers and characters

Unadorned numbers in programs are interpreted as base 10. Precede numbers with & to have them
interpreted as hex (base 16). Although characters can be used in DATA statements (in single quotes),
they can't be used in immediate statements (thisis abug!)

Interrupt system

Thisis an advanced topic. By default interrupts are disabled and this section can be ignored.

Thereisasingle simulated hardwareinterrupt linethat is"raised" then akey ispushed. If interruptsare
enabled, that isif thel flagisset, the current value of PCis pushed onto the stack, thel flagiscleared
to prevent further interrupts, and aj np is executed to the address stored in the keyboard interrupt
vector (0500,6). The code at that address (not at 0500, but at the address pointed to by 05004¢) is
performed. This code should be terminated by an'i r et instruction, which pops the stored value of
PC from the stack and executesaj np toit and resetsthe | flag.

Code examples

Add two static numbers

MOV RL, @
MOV R2, @
ADD R2, R1

Moves 5 into R1; 3into R2; and adds contents of R1 (5) into R2

Add two numbers from memory

ORG &10 ; start assenbling at 10 hex (16 deci nal)

N1 DATA 5 ; put 5 into nenory address 10 hex and call it N1
N2 DATA 3 ; put 3 into nenory address 11 hex and call it N2
ORG 0 ; go back to assenbling at O

LDR R1, N1 ; load RL with contents of menory address N1

LDR R2, N2 ; load R2 with contents of menory address N2

ADD R2, R1 ; add R1 into R2

Stores 5 into 10,6 and namesit N1; Stores 3 into 11,5 and names it N2. Loads contents of N1 into R1;
contents of N2 into R2 then added R1 into R2 3

Loop and output

Loop
MOV RL, @O ; loop limt
MV R2, @ ; loop start
TOP: ; | abel
MOV RO, R2
SW PUTINT ; put whatever is in RO out as a base 10 nunber
I NC R2 ; up the | oop count

CMWP R2, Rl ; reached [imt?




ATP

JNE TOP ; no - junmp to TOP el se drop out and end

Stores 5into 1016 and namesit N1; Stores 3 into 11,6 and namesit N2. Loads contents of N1 into R1;
contents of N2 into R2 then added R1 into R2 3

ORG &100

nmy_str DATA "hell o worl d"
ORG &0

MOV Rl, @3

LDR RO, ny_str+R1

Ismore or less equivaent to the high level code

char nmy_str[] = "hello worl d";
ny_str[3];

Stores 5 into 10,6 and namesit N1; Stores 3 into 11,6 and names it N2. Loads contents of N1 into R1;
contents of N2 into R2 then added R1 into R2 3

Non-blocking input - polling

nyl ab:
ldr rl, 1297 ; load r1 from 0x501
crprl, @ ; conpare to zero
jeq nylab ; junmp if zero
; carry on if not zero
Idr rO, 1296 ; load r0 from 0x500
SWi put char ; put r0O on screen as a character
jmp nyl ab ; go again

Non-blocking input - interuppt driven

org &500
dat a &400

org O
sti
| oop:
mov r0, ril
swi putint

mov r0, @2
swi put char

inc ril

cnprl, @
j ne | oop

mv rl, @
mov r0, @2
swi put char

jmp | oop

org &400
mov r8, r0
ldr r0, 510




ATP

swi put char

mov r0, r8
iret
Updates
Thistable of updates starts with build 146
Build Date Changes
number
146 April 29,|Added swi putsint to put out signed integer
2011
Added PUSH
Added POP
147 May 2,|Added IRET and tested interrupt driven I/O
2011
Fixed bug where memory location 0000 got set to 0000 as result of parsing
ORG

Table 6. Updates




	ATP
	Table of Contents
	History of ATP
	The Simulated System
	Memory
	Interrupt vector
	Registers
	Flags
	Memory map

	Syntax
	DATA
	ORG
	Direct mode operations
	Immediate mode operations
	Index mode operations
	Labels
	OP Codes
	Operating system calls
	Numbers and characters

	Interrupt system
	Code examples
	Add two static numbers
	Add two numbers from memory
	Loop and output
	Arrays
	Non-blocking input - polling
	Non-blocking input - interuppt driven

	Updates

