
1

ATP
This document is a reference to ATP and not a general tutorial. It describes the system that ATP is
simulating, and is a reference to the op codes. It refers to version 3.3 build 147

History of ATP
Assembler Training Program (ATP) was originated to support the hypothetical processor described in
(Knott & Waites 2000). The original ATP was written in Visual Basic and was difficult to distribute
and maintain. ATP V3 is a Java applet. As such it is straightforward to distribute: users simply open
the web page; and easy to maintain: only the web page source needs to be changed for all users to
have a new version.

The Simulated System
ATP is a simulation of a microprocessor and associated memory, and simple BIOS. It also incorporates
an assembler program with a built in editor. The BIOS supports integer and character input and output;
and string input. The processor can do a range of simple operations including basic integer arithmetic.

For experiments on interrupt driven i/o a single interrupt line and associated vector is provided.

Memory

The simulated processor is word addressed. This means that is the smallest element of memory that
can be addressed is a 1610 bit word. The system has just over 1 k words of RAM, visible from the
grid at bottom right of the ATP screen. Notice that the memory display column headers, row headers
and cell contents are all in hex.

Interrupt vector

For most simple applications the interrupt vector can be ignored, and should not be changed unless you
know what you are doing. This section can be skipped unless you plan to change the interrupt vectors

Registers

There are 14 registers.

Ten general purpose registers: R0 to R9. R0, although a general register, is used by the software
interrupts SWI PUTCHAR, SWI PUTINT and SWI GETCHAR.

PC is the program counter. This is increased by one for one-word instructions and two for two word
instructions so that after execution of an instruction it points to the next instruction to be executed.

VR is he oVeRflow register. This holds the remainder after DIV (divide) and (possibly) the high order
word on MUL (multiply) if the result does not fit into one word. If there is no remainder, or the result
of a multiply does not need a high order word, then VR will contain zero after the operation.

SP is the stack pointer. If hardware interrupts are to be used this should be set to the top of stack.
Conventionally 04FF16 is the top of stack but knowledgeable users may use other values (but take
care!)

Flags

C Carry. Set if and only if previous operation sets the 17th bit.

V Overflow. Set if previous operation would have set any bit in notional high order word and clear
otherwise. The register VR will hold the actual high order word result.

ATP

2

Z Zero. Set if previous operation would have resulted in all bits in 16 bit register being zero, otherwise
unset

S Sign. Set if high order bit is set, i.e. if result of previous operation could be regarded as negative
16 bit signed number, otherwise unset

I Interrupt. If set then hardware interrupts can occur. If unset they cannot.

Memory map

Description Syntax

0 - 04FF16 Available for user code and data. When processor
starts PC is set to 0 so location 0 should
contain an executable instruction (if only a jmp to
somewhere else.

If interrupts are used the top of this portion of
memory is used as a stack, starting from 04FF and
growing downwards.

xxx - 04FF16 Top of stack This is the recommend location for
the top of the stack since it gives the most room to
grow, however it can be located anywhere in user
memory.. Stack grows downwards towards user
memory. The register SP is the stack pointer.

050016 Keyboard interrupt vector. When a key is struck
and if the contents of this location is not 0 the
current value of PC is saved and the value in this
location is loaded into PC. Hence there should
be code to handle the keystroke at the location
pointed to by the contents of 050016 This handler
code should be terminated by an iret instruction.
If 050016 contains 0 (the usual situation) then the
built-in keyboard handler is used.

051016 The keyboard is mapped here. If this location is
read the ASCII value of the most recently pressed
key will be found. Reading this location sets
location 051116 to 0

051116 Key ready. Contains 0 if no key has been pressed
since the location 051016 was last read otherwise 1

Table 1. memory map

Syntax
In the following examples of syntax value stands for a number, regD for a destination register, regS for
a source register, and reg for a register which can be source or destination or source and destination.
Items in square brackets are optional.

Description Syntax

Set contents of unnamed memory cell(s) DATA value[,value[,value]...]

Set contents of named memory cell(s) someName DATA value[,value[,value]...]

Set instruction counter ORG 27

Label myLabel:

Table 2. Directives - Executed at assemble-time and generate no code

ATP

3

Mode Description Syntax

Direct mode Register to register operation OP regD, regS

Immediate Mode Register and literal number
operation

OP reg, @33

Indexed mode Load or store from/to an address
determined from adding the
number (33 in this example) to
the content of the register

OP regD, 33+regS

Table 3. Addressing Modes

Entry Syntax

Operating system call SWI NAME_OF_OF_CALL

Table 4. Others

DATA

Can have just one value or comma delimited list. The DATA directive assembles values into memory
at current assemble-time counter (see ORG). If optional label is used (to left of DATA) this is given
the value of the location in memory used

Single characters in single quotes are converted to ASCII before assembly. Example:

mylabel DATA 65, ’B’, 66

ORG

As the assembler assembles the program in to memory it uses an internal counter to keep track of
where the code for the next statement should be assembled. This starts from 0 by default. Users can
control the value in the counter with the ORG directive. Example:

ORG 120

Sets the instruction counter to 12010

Direct mode operations

Direct mode operations involve two registers. Example:

MOV R1, R2

Moves whatever is in R2 into R1

Immediate mode operations

Immediate mode opcodes involve one register and one literal number Example

MOV R1, @33

Moves 3310 into register 1

Index mode operations

Immediate mode opcodes involve one register and a memory cell whose address is calculated by
adding a literal number to the value currently stored in a register. Only LDR (load register from
memory) and STR (store register to memory) work with indexed mode.

ATP

4

LDR R4, 34+R1 ; load contents of memory location
; formed by adding R1 to 34
; into register R4

Loads whatever is in the memory address R1+3410 into register R4

Labels

A label is assigned the current value of the instruction counter at the point where the label is
encountered. labels are used as the target of jumps. Example Inserts a label mylabel between the two
mov statements. The values assigned to labels can be seen in the symbol table.

 MOV R1, R2
mylabel:
 MOV R3, R4

Inserts a label mylabel between the two mov statements. The values assigned to labels can be seen
in the symbol table.

OP Codes

MOV Move contents of second operand into first. Direct and immediate mode.

CMP Compares second operand with first. Actually, it subtracts second from first and sets the flags
but does not change either operand. Direct and immediate mode.

MUL Multiplies first operand by second and leaves result in first. If result is too big to fit in first then
overflow flag is set and overflow is stored in VR. Direct and immediate mode.

XOR Xors first operand with second and leaves result in first. Direct and immediate mode.

SUB Subtract second operand from first and leaves result in first. Direct and immediate mode.

LDR Loads contents of effective address into first operand register.

STR Stores contents of first operand register into an effective address . Effective address can be a
number or a number+a register. (Indexed mode)

INC Adds one to register.

DEC Subtracts one from register.

JEQ Jump if EQual (i.e. if Zero flag set)

JNE Jump if Not Equal (i.e. if Zero flag is clear)

JGT Jump if Greater Than

JLE Jump if Less than or Equal

JLT Jump if Less Than

JVC Jump if oVerflow Clear

JVSJump if oVerflow Set

IRET Return from interrupt. Atomically (resets the interrupt flag, jumps to the address found at the
top of the stack, and pops the stack)

STI Sets the interrupt flag, thus permitting interrupts to occur

ATP

5

CLI Clears (resets) the interrupt flag, thus preventing interrupts from occurring

PUSH Pushes contents of register onto the stack and decreses SP by one. (copies the contents of
register into memory address pointed to by SP). The stack should be set up before executing PUSH
or unexpected things will happen

POP Pops the stack into register and increases SP by one. (copies the contents memory address pointed
to by SP into register). The stack should be set up before executing POP or unexpected things will
happen

Operating system calls

There is assumed to be a very simple operating system to perform keyboard input and screen output.
Programs need to be able to call into the operating system to do input and output. The opcode SWI
<somefunction> calls into the operating system. In this processor all calls to the operating system pass
in and get out data through R0. Thus, although R0 is a general register it is best to avoid using it so
it is vacant for any operating system calls that need to be made.

mov r0, @5
swi putint ; put 5 out on screen (put unsigned int)

Outputs the value in R0 as an unsigned base 10 integer.

mov r0, @-5
swi putsint ; put -5 out on screen (put signed int)

Outputs the value in R0 as an signed base 10 integer.

mov r0, @65
swi putchar ; put A out on screen

Outputs the value in R0 as an ASCII character

swi getint
; R0 now contains the number the user entered

Gets an integer from the input window as a base 10 integer. The thread of execution stops and waits
until the user presses the [input] button. If the number is preceeded by a minus sign it will be interpreted
as a signed negative number. It the string can not be interpreted as a base 10 integer the message
"PANIC: not a number" will be written in the status window and zero will be stored in R0. Execution
will continue.

 jmp start ; jump over buffer to next executable line
 BUFFER data 5
 data " "
start:
 mov r0, @BUFFER ; move *address* of buffer into R0
 swi getstr

Gets a string from the user. Before the call R0 should be set to contain the address of a buffer, that
is a series of addresses, large enough to contain the anticipated string. When the user types the string
and hits return the buffer will be filled with the string formated as follows. The string format has the
first (lowest) word as a number representing the string length (not including the first word), thus the
string “ABC” would be represented in memory as

Address Value Description

55 3 Length word

56 65 ASCII "A"

57 66 ASCII "B"

ATP

6

Address Value Description

58 67 ASCII "C"

Table 5. String "ABC" in memory starting at 55

Numbers and characters

Unadorned numbers in programs are interpreted as base 10. Precede numbers with & to have them
interpreted as hex (base 16). Although characters can be used in DATA statements (in single quotes),
they can’t be used in immediate statements (this is a bug!)

Interrupt system
This is an advanced topic. By default interrupts are disabled and this section can be ignored.

There is a single simulated hardware interrupt line that is "raised" then a key is pushed. If interrupts are
enabled, that is if the I flag is set, the current value of PC is pushed onto the stack, the I flag is cleared
to prevent further interrupts, and a jmp is executed to the address stored in the keyboard interrupt
vector (050016). The code at that address (not at 050016 but at the address pointed to by 050016) is
performed. This code should be terminated by an iret instruction, which pops the stored value of
PC from the stack and executes a jmp to it and resets the I flag.

Code examples

Add two static numbers

MOV R1, @5
MOV R2, @3
ADD R2, R1

Moves 5 into R1; 3 into R2; and adds contents of R1 (5) into R2

Add two numbers from memory

ORG &10 ; start assembling at 10 hex (16 decimal)
N1 DATA 5 ; put 5 into memory address 10 hex and call it N1
N2 DATA 3 ; put 3 into memory address 11 hex and call it N2
ORG 0 ; go back to assembling at 0
LDR R1, N1 ; load R1 with contents of memory address N1
LDR R2, N2 ; load R2 with contents of memory address N2
ADD R2, R1 ; add R1 into R2

Stores 5 into 1016 and names it N1; Stores 3 into 1116 and names it N2. Loads contents of N1 into R1;
contents of N2 into R2 then added R1 into R2 3

Loop and output

Loop
 MOV R1, @10 ; loop limit
 MOV R2, @0 ; loop start
TOP: ; label
 MOV R0, R2
 SWI PUTINT ; put whatever is in R0 out as a base 10 number
 INC R2 ; up the loop count
 CMP R2, R1 ; reached limit?

ATP

7

 JNE TOP ; no - jump to TOP else drop out and end

Stores 5 into 1016 and names it N1; Stores 3 into 1116 and names it N2. Loads contents of N1 into R1;
contents of N2 into R2 then added R1 into R2 3

Arrays

ORG &100
my_str DATA "hello world"
ORG &0
MOV R1, @3
LDR R0, my_str+R1

Is more or less equivalent to the high level code

char my_str[] = "hello world";
my_str[3];

Stores 5 into 1016 and names it N1; Stores 3 into 1116 and names it N2. Loads contents of N1 into R1;
contents of N2 into R2 then added R1 into R2 3

Non-blocking input - polling

mylab:
 ldr r1, 1297 ; load r1 from 0x501
 cmp r1, @0 ; compare to zero
 jeq mylab ; jump if zero
 ; carry on if not zero
 ldr r0, 1296 ; load r0 from 0x500
 swi putchar ; put r0 on screen as a character
 jmp mylab ; go again

Non-blocking input - interuppt driven

org &500
 data &400

org 0
 sti
loop:
 mov r0, r1
 swi putint

 mov r0, @32
 swi putchar

 inc r1
 cmp r1, @9
 jne loop

 mov r1, @0
 mov r0, @12
 swi putchar
 jmp loop

org &400
 mov r8, r0
 ldr r0, 510

ATP

8

 swi putchar
 mov r0, r8
 iret

Updates
This table of updates starts with build 146

Build
number

Date Changes

146 April 29,
2011

Added swi putsint to put out signed integer

Added PUSH

Added POP

147 May 2,
2011

Added IRET and tested interrupt driven I/O

Fixed bug where memory location 0000 got set to 0000 as result of parsing
ORG

Table 6. Updates

	ATP
	Table of Contents
	History of ATP
	The Simulated System
	Memory
	Interrupt vector
	Registers
	Flags
	Memory map

	Syntax
	DATA
	ORG
	Direct mode operations
	Immediate mode operations
	Index mode operations
	Labels
	OP Codes
	Operating system calls
	Numbers and characters

	Interrupt system
	Code examples
	Add two static numbers
	Add two numbers from memory
	Loop and output
	Arrays
	Non-blocking input - polling
	Non-blocking input - interuppt driven

	Updates

